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Abstract-In this paper the effects of prebuckling deformation caused by edge constraints, and non linear strain
displacement relationships, on the inelastic buckling process of axially compressed cylindrical shells are studied.
By Drucker's postulate of positive work in plastic deformation, a modified incremental theory of plasticity on
the stress-strain relationships expressed in terms of Kirchhoff stress and Green strain rates is developed. A
variational principle in the Lagrangian description and for quasi-static problems of finite plasticity is developed.
and the existence of an extremum principle for a material having a sufficiently great hardening rate is shown.
In addition a criterion for the stability of a body under dead load is established.

The variational principle in conjunction with the incremental Rayleigh-Ritz technique is used to determine
the deformation process of an idealized cylindrical shell composed of four thin load carrying sheets made of a
general work hardening material. The theoretical predictions obtained numerically by digital computer compare
favorably with available experimental results.

INTRODUCTION

THE cylindrical shell has been one of the most commonly used elements in modern struc
tures, and has stimulated considerable interest in the theory of thin shells. A major problem
of interest is to determine the inelastic buckling process of the axially compressed cylindrical
shells [1-7). Existing solutions are based on the small deflection assumption, the stress
strain relationships by either the incremental [8,9] or deformation [10] theories of plas
ticity, uniform material response and idealized boundary conditions. In this paper these
assumptions and conditions are re-evaluated.

In most existing analyses, the critical load at which a bifurcation of stable equilibrium
configurations of an axially compressed cylindrical shell is determined. It is found that
the critical axial loads based on the deformation theory, which assumes a one to one
correspondence between stress and strain and ignores the material stress history, often
agree quite well with experimental maximum loads. For the relatively more rigorous
incremental theory, this is not the case.

It is implied in most existing analyses that a cylinder just prior to buckling, in the sense
of bifurcation, is perfectly cylindrical and is in a state of uniform axial stress. It is further
assumed that axial loading and bending occur simultaneously such that no strain reversal
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takes place. In reality, edge constraints produce bending waves, thus the assumption of
a simple stress state and hence uniform material response may not be realistic near the
buckling load, as demonstrated by Lee [11] in a recent paper. In considering the effects
of prebuckling deformation and edge constraints, Lee determined the critical load of un
loading corresponding to axisymmetric deformation. The presence of non-uniform
prebuckling deformation indicates the possibility of a continuous and complex deforma
tion process rather than an abrupt geometrical change as implied by the bifurcation
analyses. By investigating this total buckling process rather than a single characteristic
or critical load, additional insight may be added to the instability process.

In this paper, the inelastic buckling process of an axially compressed circular cylindrical
shell with edge constraints is studied by an approach using the relatively rigorous incre
mental theory of plasticity which considers the material stress history. Furthermore, the
effects of the nonlinear strain-displacement relationships, initial imperfections and edge
constraints on the prebuckling and postbuckling proce~s are analyzed A variational
procedure for quasi-static problems of finite plasticity [24] is used to determine the effect
of these considerations. The variational principle is derived from a set of rate equilibrium

.equations.
A numerical procedure based on an incremental Rayleigh-Ritz technique is employed

to determine the velocity field for a prescribed loading rate and the subsequent deformation
process including the maximum load. To make the amount of computation tenable, an
idealized sandwich shelL having four thin adjacent load-carrying sheets made of a general
work hardening material, is employed. The numerically determined maximum loads are
compared with available results.

THE VARIATIONAL PRINCIPLE

For treating quasi-static problems of inelasticity, variational principles expressed in
terms of stress and strain rates, and velocity fields have been suggested [12-15]. The follow
ing variational principle for quasi-static problems of finite plasticity is formulated in a
similar spirit.

Consider a body of continuum occupying a region Vbounded by a surface S = Su+ST
in the current (deformed) state, which corresponds to a region Vo with a boundary surface
So = So.. + SOT in the natural (undeformed) state. Let the initial position of a particle in
the body be at llj in a three dimensional space and its current (displaced) position be at Xi
in the same space. Let u; be the displacement vector of the particle, i.e. Ui = Xi - ai' The
body is subjected to a body force per unit mass Fj , a surface traction 'Ii over the portion
of the boundary surface ST and specified displacement Uj over the portion of the boundary
surface Su' The following relationships may be defined:

PodVo = pdV

and

Fo,Po dVo = Fjp dV (1)

To, dSo = 'Ii dS

where Po is the natural mass density which corresponds to the density p in the current
state. FOi and To, are the conceptual body force and surface traction associated with the
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natural state. For convenience in expressing a stress-strain law, the symmetric Kirchhoff
stress tensor, Sij' may be used [16]. The Kirchhoff stress tensor is defined by its relationship
with the Eulerian (true) stress tensor (J'ij. or

Po oaj oaj
Sjj = -P ax ax (J'~~. (2)

~ ~

By its definition, the Kirchhoff stress tensor has the following relationship with the surface
traction

(3)

where an index j following a comma indicates partial differentiation with respect to aj
and the repetition of an index in a term denotes a summation with respect to that index
over its range. no, is the unit outer normal vector of the original surface area dSo. It may
be shown that the equilibrium of any portion of the body requires that

[Sjk(<>ik + Uj,k)lj+ PoFo, = 0 (4)

where <>ik is the Kronecker delta Differentiating equation (4) with respect to time, we find

[:t[Sjk(<>ik+Ui,k)]}.j+PoFo, = O. (5)

Consider a class of arbitrary virtual velocities <>U; which are continuous, triply differentiable
over the domain Yo, and which vanish over the boundary surface Sou' whereon values of
velocities are prescribed. Multiplying equation (5) by <>U; and integrating the products
over Vo, it is found that

f. {: [Sjk(<>ik +Ui'k)]} .<>UidVo+f. PoFo,<>ujdVo = O. (6)
Vo t ,J Vo

On introducing
o .

nOj ot [Sjk(<>ik +Ui.k)] = To,

and using Gauss theorem, we obtain the variational equation of equilibrium

r Sij<>e.ij dVo+ r SijUk,i<>Uk,j dVo = f. POFO,<>Ui dVo+ r to,15Ui dSo (7)
J~ J~ ~ ~

where Eij is the Green strain tensor [14] or

eij = !(ui,j+Uj,i+Uk.iUk,j)

and

(8)

<>e... = .l(<>u. .+ <>u· .+ l5uk ,Uk .+Uk ·I5Ukj)' (9)I) '2 1,,) ).1 ,I,J ,I ,

Equation (7) may be put into a more familiar form by introducing a strain rate potential
obtained by the following consideration on the stress-strain relationship.

From a continuum view point, there are two popular types of constitutive relations
in plasticity, incremental theories and deformation or total strain theories [17]. The
deformation theories postulate a unique relation between stress and total strain, In general,
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this is physically unacceptable because plastic deformation is path dependent and irre
versible. However, for some simple loading paths, the deformation theories may be con
sidered as a mathematical approximation [10].

The isothermal incremental theories are based on Drucker's fundamental postulate [8J
which may be stated as follows: consider an element initially in some state of stress, to
which by an external agency an additional set of stresses is slowly applied and slowly
removed. Then the work done by the external agency is positive during the process. In
his evaluation of infinitesimal plastic deformation, Drucker employed the Eulerian stress
tensor and deformation rate tensor, eij, in describing the rate of doing work, DW/Dt,
per unit mass, or

(10)

It may be shown that, in terms of the Lagrangian variables, the rate of doing work may be
written as

DW 1
- = -So .f,.. (11)Dt P IJ IF

Assuming the existence of a loading surface [f(Sij) = C] in the stress space, Drucker's
postulate and equation (11) establish two requirements: (a) the loading surface is convex
and (b) at a smooth point off = C, the plastic strain rate vector is always directed along
the normal to the loading surface. In other words, the isothermal relationships between
Kirchhoff stress rates and Green strain rates may be written as

or

. 'e'p (C G
Of

)'"8ij = 8ij+8ij = ijkl+ OSkl oJkl for f = C and df > 0

for f < C or df :s; 0

(12)

where f,'fj is the elastic strain-rate and G and f are functions of the state of the material,
which may include the strain and the history of loading as well as the existing state of
stress. The coefficients C;jkl may be functions of the existing state of stress or constants.

A loading function for finite plasticity, f, expressed in terms of Kirchhoff stresses has
been employed by Green and Naghdi [18]. The constitutive relationships given by equa
tion (12) do satisfy the coordinate and spatial invariance and thermodynamics requirements
under isothermal conditions.

The inversions of equation (12) may be written as

for f < C or df:S; 0

or (13)

for f = C and df > O.

Analogous to the elastic strain-energy function, the strain-rate potential

for f < C or df:S; 0
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or

U(8kj) = Dijkl8i)kl

may be established such that

for f = C and df > 0 (14)

(15)

Substituting equation (14) into (71 it is found that

<5[I(ui)] =J[f (U+tsijuk,A)dVo- f poFo,UidVo-f tOAdSoJ = O. (16)Jvo Jvo So

In carrying out the integral in equation (16), the regions of loading (df > 0) and unloading
(df:::; 0) required in formulating the strain-rate potential U are assumed. In carrying
out the variational process the stress-rate variations are only allowed along some per
missible paths [15] from state 1 to state 2 such that

[(Sijh -(Sij)t][(ei)2 -(8ijh] > O. (17)

Furthermore, the assumed regions of loading and unloading must agree with the
determined regions of loading and unloading. In the direct method of calculation, this
may be accomplished by a trial and error process, if the trend of deformation is followed.

By comparing the value ofthe functional [(Ui) in equation (16) for any distinct compatible
velocity field, Ui, with that for the true velocity field, til, it may be shown that the functional
has an absolute minimum value for the true velocity field when the following inequality
is satisfied:

(18)

where LiUi = Ui - til·
The integral

is positive if the variations are only allowed along permissible paths specified by
inequality (17~ The value of the integral depends on the rates of hardening or the values
of Cijkl and Dijkl in equation (13). The other integral in equation (18) mayor may not be
positive depending on the current state of stress and deformation. Therefore, the extremum
property and the implied uniqueness of the solution of the problem exists only for suffi
ciently great rates of hardening.

It is of interest to note that the criterion (18) for the extremum property is related to
a criterion for the stability of an equilibrium state in the following sense. The classical
definition of stability by Dirichlet and Kelvin may be stated as follows. A body is in a
state of stable equilibrium if, in the motion following any kind of transitory disturbance,
the amplitude of the additional displacement is always vanishingly small when the distur
bance itself is vanishingly small. According to this definition, a sufficient condition for
stability is that in any possible infinitesimal displacement from the position of equilibrium,
the internal energy stored or dissipated should exceed the work done on the system by
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the acting external forces. This permits the containment or decay of the kinetic energy
caused by the external disturbance. Consider an arbitrary, compatible displacement,
du j , which occurs fictitiously in the time interval dt. The above condition leads to

f [f
to+lI.t ] f [ ftO+M ] f [ fto+1I.1 ]SijEij dt dVo - T8, Uj dt dSo- F8, Po Uj dt d Vo

Va to So to Yo to

(19)

where superscript 0 of a quantity denotes the quantity at to' The inequality (19) remains
valid when both sides are divided by M2 and may be expressed as

(20)

Inequalities (18) and (20) appear to be similar and yet they are distinct criteria. Criterion (18)
is for any pair of velocity fields satisfying the constraints whereas criterion (20) is for any
velocity field satisfying the constraints therefore, the inequality (20) is always satisfied
when inequality (18) is (but not vice versa); for (18) reduces to (20) when one field ofa pair
is null. Therefore, it is possible that, at a certain state, the solution of the incremental
boundary value problem is not unique yet the state may be stable. An example is the
bifurcation phenomenon at the tangent modulus load of an inelastic column as illustrated
by Shanley [19,20]. It is to be noted that, whether the solution is unique or not, the varia
tional principle by equation (16) remains valid for an equilibrium solution.

The foregoing uniqueness and stability criteria are essentially identical to that obtained
by Hill [14] except that they differ in form. Hill expresses his results in terms of Lagrangian
or "nominal" stress rate tensor which is not symmetrical and has a comparatively involved
constitutive relationship with the velocity gradient. The results in this paper are expressed
in terms of the Kirchhoff stress rate tensor which is symmetric and has relatively a simple
constitutive relationship with the Green strain rate tensor.

SHELL GEOMETRY

Consider a simply supported cylindrical shell of uniform thickness h and length 2L,
with or without geometrical imperfections as shown in Fig. 1. Let X, Z and () denote the
axial, radial and circumferential coordinates of the undeformed middle surface of radius R,
as shown in Fig. 1. The radial difference between the radial distance ofa point at the middle
surface and the mean radius is denoted by

(21)

where wand W(both positive inward) are respectively, the displacement due to loading
and the initial imperfection. The axial and circumferential displacement of a point on
the middle surface of the shell is denoted by u and jj respectively.

The following assumptions usually considered in the theories of thin shells are made:
(a) The displacements are small in comparison to the length or radius of the cylinder,

but may be of magnitude comparable to the thickness; and
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I---PLANE OF SYMMETRY

FIG. 1. Shell geometry.

(b) normal stresses in the radial direction are negligible and lines originally normal
to the middle surface of the shell remain so after deformation.

To simplify the subsequent analysis, the following non-dimensional quantities are
introduced

x
x=-,

R

z
Z=

R'
v

v =
R'

w
W=-

R
(22)

and
A

A W
w=R'

The normal and shear strains may be shown to be

(23)

Since both ends of the shell are hinged, the deformation will be symmetrical with respect
to the plane at x = L/R. The boundary conditions for the hinged end are

v = W = W,xx = 0 at x = 0

and the boundary conditions at the plane of symmetry are

U = v,x = W,X = 0 at x = L/R.

Further simplification of the axial strain may be made by letting

and

f
L'R

UB = x <tw,; +w'xw'x) dx

where both UB and Us are zero at x = L/R.

(24)

(25)

(26)

(27)
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The quantity UB may be interpreted as that part of the axial deformation of the middle
surface associated with the inextensible bending of the middle surface. Then the axial
strain may be shown to be

(28)

In the subsequent analysis, the strain and displacement rates or increments are used in
addition to the total radial displacement. The pertinent quantities are presented here for
completeness.

f.o = v,o-w+How,o-z(w,oo+v,o)

Yxo = us.o+v,Al-z)+Hxw,0+How,x-2zw,xo

where

Ho = w.o+w,o·

The boundary conditions may also be written in terms of the displacement rates as

(29)

and

v = w= lV'xx = 0 at x = 0

at x = L/R.

(30)

(31 )

The strain displacement relationships may be combined with the equilibrium and
constitutive relationships to obtain a solution to the problem. However, the constitutive
relationships as given in equation (15) are in a general form and must be specialized for
the shell problem. This is done in the subsequent analysis.

STRESS STRAIN RELAnONS

In engineering practices, the property of a material is characterized by the nominal
stress vs. nominal strains (Snom vs. e) curve obtained from a uniaxial tensile test. Assum
ing the condition of conservation of mass, it may be shown that the uniaxial Kirchhoff
stress, S, may be written as

S = Snom.
l+e

Furthermore, the uniaxial Green strain, e, may be expressed by

(32)

(33)

Thus, with the two previous equations the nominal stress-strain curve can be converted
into the Kirchhoff stress vs. Green strain curve.
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The magnitude of the maximum elastic strain of a shell structure is usually small.
Therefore, for an isotropic and homogeneous material, the elastic stress-strain relation
ship may be reasonably expressed by,

(34)

where E and v are respectively Young's modulus and Poisson's ratio. The plastic stress
strain relationship depends on the loading function F and the proportionality function G,
which strictly speaking, should be experimentally determined. Available experimental
results indicate that the Mises' yield function or loading function [17] leads to a good
prediction of the initial yielding of an isotropic material. Furthermore, in the absence
of Bauschinger effect and in a case of relatively small strain, the Mises' function gives also
a good prediction of the subsequent yielding. Usually, the Mises' function or the second
invariant of the deviatoric stress tensor has been expressed in terms of the true stress. For
a case of small strain (although the rotation may be large), the difference between the
value of the second invariant of the true stress tensor and that of the Kirchhoff stress
tensor is relatively small. For the shell problem, it is expected that the foregoing conditions
prevail. Therefore, it is assumed that

(35)

where

(36)

(37)

Employing the concept of isotropic hardening and assuming that the scalar function G
is a function of the invariant J 2 only, G may be determined from the results of a simple
tension test. It may be shown that

G - 3 [1 1] for j 2 > 0
- 4J2 El-E

G = 0 for j2 ~ 0

where El is the tangent modulus obtained from the uniaxial Kirchhoff stress vs. Green
strain curve. Furthermore, the conditions j 2 > 0, j 2 = 0 and j 2 < 0 specify respectively
the conditions of loading, neutral loading and unloading.

Turning now to expressing explicitly the stress rates in terms of strain rates for the
shell, the assumption of plane stress and the relations given by equations (12), (34H37)
are employed. Carrying out the relevant substitutions, the Kirchhoff stress rates may be
expressed as

Sl = Sx =fllex+f12eO+f13Yxo

S2 = So = f12ex+f22 eO+f23Yxo (38)

83 = 8xo =f13 f. x+f23 f.0+f33YXO

where the symmetries matrix of coefficients fij may be expressed in terms of the inverse
of the matrix cij as

fij = cD 1 i,j = 1,2,3 (39)
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1 G 2
Cll = E+"9(2Sx-So)

-v G
C1 2 = E+"9(2Sx-So)(2So-Sx)

G
Cl3 = 3(2Sx-So)2Sxo

1 G 2
Cn = E+"9(2So-SJ

G
G23 = 3(2So-Sx)(2Sxo)

2(1+v) 2
C3 3 = -E-+ G(2S>:o) • (40)

The value of G is defined as in equation (37) with

(41)

It should be noted that this form of the invariant differs from the form used by many
previous solutions (lH5) utilizing the bifurcation approach in that the present state of
S/J and Sx/J are considered important as well as the axial stress Sx, if prebuckling deforma
tions are to be considered.

For a general work hardening material, a numerical description of the Kirchhoff
stress vs. Green strain curve is needed for the numerical computation. In the subsequent
numerical solution, the stress-strain curve is approximated by choosing Pe points on
the curve in addition to the origin. Furthermore, the segment of the curve from the origin
to the first point is considered linear with subsequent curve segments approximated by
piecewise parabolic sections with continuous slopes at each point.

METHOD OF SOLUTION

The functional I involved in the variational principle expressed by equation (16)
may now be specialized to the case of axially compressed cylindrical shells in the form

(42)

where P is the applied axial traction rate and mo is an integer multiple of the number of
periodic circumferential waves. Employing equation (38). the functional I may be written
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as

f

LIR f21llmO fhl2R
[ = R 3 {/llB; + f22Bi + f33Y;1/ + 2f12Beex

o 0 -h12R

+ 2f13BxYxl/+ 2f23BOYxl/+ SxW~x+ SoW;o+ 2Sxow,xW,0} dz dO dx

f

21llmO

- 2PR2
0 u(O, 0) dO.

A solution of the problem may be obtained by using the Rayleigh-Ritz method of varia
tional calculus and a numerical procedure. Furthermore, since the loads are applied
quasistatically, inertia forces may be neglected and an arbitrary time scale may be chosen
such that the velocities and displacement increments have the same values. In other words
rates and increments may be treated synonymously.

The following computational scheme is employed. The present state of stress, deforma
tion and the condition of loading or unloading are assumed known at each point in the
body. The velocity field may be represented by a number of chosen admissible functions
with arbitrary coefficients. When these functions are substituted into the functional [,
the latter becomes a function of the coefficients which may be chosen so that [ has an
extremum. After the velocity field is determined, the deformation, stress and material
states of the body at a small time interval later may be determined. Subsequently, the
condition of loading or unloading may be determined from the strain rates. If the assumed
condition does not agree with the outcome, then the condition indicated by the outcome
is assumed and the computation is repeated until the calculated and assumed loading
or unloading conditions agree. Once a correct velocity field has been determined, the
variational principle may be reapplied. By repeating this procedure the deformation
process is obtained.

The coordinate functions are chosen such that each one independently satisfies the
boundary conditions, equations (30) and (31). Furthermore, they may describe closely
the deformation patterns associated with existing elastic solutions such as in Ref. [22].
The displacement rates are represented by

w= blgl +b2g2 +b3g3

iJ = bd4

Us = bsgs+b6g6 +b7g7 +bsgs

where bj(i = 1, ... ,8) are arbitrary coefficients and the coordinate functions gj are defined
by

gs = (L/R-x)

gj+s = e-AJX(~jcos2(Xjx+Qjsin2(Xjx)-(x-L/R)-Dj j = 1,2

gs = cos (Xx sin PO

gj = e-AJX(cos 2 (Xjx+ r j sin 2 (Xjx)-1

g3 = sin (Xx sin PO
g4 = sin (Xx cos PO

j = 1,2

(45)
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j = 1,2

n = 1,2 ...

,F-4a2

r.= J J

J 4a /4'j

2n+ 1 n
a = '-2-- L/R

fJ = mmo m = 1,2... (46)

4a~ - 3A~Ii. - J J
j - 2k(A2 +4a~)

J J J
j = 1,2

12Ct:~ A~o - J J
j - 4a.(A~ +M)

J J J

Dj = e-AjLIR(li.j cos 2ajL/R+Oj sin 2IXj L/R).

The values of a and fJ are determined by the variational procedure, whereas the parameters
aj(j = 1,2) are determined from the condition w,x = 0 at X = L/R by the equation

cos 2rxj L/R sin 2Ct:j L/R 0 (47)-----'---+ = j = 1,2
2Aj 4rxj

which is solved for the value of aj closest to the value of a. The values of A1 and A2 are
chosen initially based on the elastic solution, and are adjusted for subsequent load incre
ments depending upon the relative amplitudes of the respective coefficients.

The initial imperfection field was chosen to be of the form

w= Cf sin a'x sin fJ'O

where Cf' rl and fJ' are the constant amplitude and wave length to be chosen at the outset
of the computation.

By combining equation (44) and equations (45) and (46) and substituting the results
into equation (29) the functional 1 may be written in the form.

8 8 8

1= L L bjbJij+P L Ipib i
j=l j=l i=l

(48)

(49)

where l ij , symmetric with respect to i and j, is a definite integral of the form

3 J.LIR J.2
1tlmO fhl2R -

Iij R Iij dz dO dx.
o 0 -h12R

The values of Iij are determined from the indicated substitutions and are seen to be functions
of material property coefficients as well as the present state of stress and deformation.
The values of 1pi are similarly determined by the indicated substitutions in the second term
of equation (43).

In equation (48) the coefficients bi are determined from the condition that the func
tional 1 has an extremum, i.e.

81 8 •
- = 2 L b.J.-+PI . = 0obi j= 1 J IJ pI

(i 1, ... ,8). (50)
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For a given loading rate P and known values of lij and I pi' the previous system of
equations may be solved for the values bi' However, when P reaches a maximum, P will
be zero and the solution of equation (50) may not be unique. To circumvent this difficulty,
the average axial velocity under the applied load, uav ' which is a monotonic function, is
used as an additional constraint. uav is defined as

(51 )

Instead of specifying the loading rate, the value of uav is assigned. Thus, equations (50)
and (51) may be solved simultaneously for the corresponding nine unknowns, bj(i = 1, ... ,8)
and P.

Knowing the present state of stress, deformation, Al and ,1,2' and the desired average
end displacement increment, the coefficients bi(i = 1, ... ,8) and P are determined for a
particular value of the pair m and n, corresponding to the number of axial and circum
ferential waves respectively. The value of I may then be determined from equation (48).
Next the value of I corresponding to m+ 1, nand m, n+1 are calculated and the approxi
mate value of aI/art. and ol/oP are determined. The minimum value of I corresponding
to, at most, a discrete increment of n or m may be determined by extrapolating from the
derivatives ol/arx and ol/op. Existing elastic solutions are helpful in determining an initial
value for m and n. The procedure is believed sound since the deformation process will
be continuous and a new value of rt. and p may be calculated for each prescribed end
displacement increment.

Finally, the problem of numerically calculating the integrals in equation (43) is dis
cussed. To alleviate the difficulty of keeping track of the material response of each point
in the shell, the uniform shell is conceptually replaced by a structure composed of four
thin load carrying cylindrical sheets, with a fixed spacing between any two sheets. Each
sheet is made of a work hardening material. The z coordinate for each sheet is

h
z = -(2q-5)

8R
q = 1, ... ,4 (52)

where q is defined as the sheet number. There is no stress variation through the thickness
of each sheet which carries stress resultants equal to the products of the respective stress
components and h/4. In addition each sheet is divided axially into Pa-1 equal segments
separated by Pa axial sections and then divided circumferentially, into Pc-1 equal segments
separated by Pc circumferential sections. The axial and circumferential coordinates given
by the intersection of the axial and circumferential sections are

r-1 L
X=---

Pa-1 R

s-l 2
() = --

pc-I mo

r = 1, ... , Pa

s = 1, ... , Pc'

(53)

Consider the integral in equation (49) and let the following notation be introduced.

(54)
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Thus the integration may be approximated by the following scheme:

3 fL/R fh/2R f21t/m o _ RhnL 4
R ]··d8dxdz = L:

o -h/2R 0 I} 2mo(Pa-1)(Pc-1)q=1

r~21 ~~: lik,S,q)+~~~21 (Iij(r, l,q)+lij(r,pc,q)) (55)

+~:t1

(Iii1, s, q) + I(Pa' S, q))+t(1ij(l, 1, q)+ liP' Pc, q)+ lij(Pa' 1, q)+ liiPa, Pc' q))} .

The foregoing numerical procedure has been incorporated into a computing program
in Fortran language [23]. The results follow.

RESULTS AND DISCUSSION

Numerical results have been obtained by the foregoing procedure for four right circular
cylinders, three of which buckled in the axisymmetric mode, and the fourth buckled in the
non-symmetric or diamond shape mode. These four numerical results are believed to be
representative of, and to agree favorably with the experimental results of Lee [3], as well
as existing theories.

The experimental results of Lee were used for two reasons. First, the edges of the
specimens were in a testing condition which would be considered quite close to that of a
hinged edge. Secondly, the specimens were made of a relatively soft aluminum alloy,
3003-0, with nominal tensile stress-strain curve as given in Ref. [3], chosen because its
properties are such as to magnify the differences between the critical buckling stresses of
different geometries as well as that of different theories. The specimens used by Lee were
of different lengths. However, the length of a specimen apparently had little effect on its
buckling load; and for this reason all four cylinders investigated by the present procedure
were assumed to be of the same length.

The four cylinders under investigation had the following geometric properties:

TABLE 1

Cylinder R 2L Rlh Cf P' r/

1 5·0 20·0 50·00 0·00 0·0 0·00
II 5·0 20·0 30·00 0·00 0·0 0·00

III 5·0 20·0 15·00 0·00 0·0 0·00
IV 5·0 20·0 46·06 0·01 4·0 3·92

with the numerical parameters Pa = 50, Pc = 20, mo = 2.
The theoretical deformation process of cylinders I-III are typified by that shown in

Figs. 2 and 3. Figure 2 shows the variation in the average axial displacement with axial
load, while Fig. 3 shows the calculated radial deflection profiles for various axial loads
acting on cylinder I. Figure 3 indicates that the bending waves develop gradually at first
and then grow rapidly as the maximum load is approached The buckling process is charac
terized by an increasing rate of deformation, rather than an abrupt geometrical change
implied by the idealized bifurcation approaches. It should be noted that cylinders I-III
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FIG. 2. Axial end displacement vs. applied axial load for cylinders I-III.

all exhibit unloading prior to reaching the maximum load as in [11], and similar to the
phenomena observed in the inelastic buckling of columns [19,20]. Also, the experimentally
observed phenomena of successive failure and subsequent collapse of local bending
waves near the hinged end is seen to occur.

For the range of R/h investigated, 15 < R/h < 50, the results indicate that the axi
symmetric mode of deformation is preferable for an initially perfect cylinder. However,
if initial imperfections of sufficient amplitude are introduced, the present procedure may
predict the diamond shape mode of deformation. A diamond pattern initial imperfection
was introduced in cylinder IV, corresponding to Lee's [3] only sample which buckled in the
diamond shape mode of deformation, and the present theory was applied. The radial
coordinate function, corresponding to the diamond shape mode of deformation, in
creasingly became the most dominant component in the deformation process as the axial
load approached the buckling load.
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FIG. 3. Radial deflection profiles for cylinder I under various axial loads.
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The initial buckling load predictions for different theories are presented in Fig. 4,
along with the experimental results of Lee [3]. The upper and lower solid curves correspond
to the critical bifurcation loads by the incremental [5J and deformation [2J theories,
respectively, using the hinged end assumption. The middle solid curve corresponds to the
same locus of critical loads as the upper solid curve except that the free edge assumption
is used [7]. The present theory in which prebuckling deformation is considered, predicts
maximum loads, hypothesized for axisymmetric deformation by the dashed curve which
is seen to be considerably lower than the curve corresponding to the bifurcation approach
by Batterman [5J using incremental theory and the hinged end assumption. For the range
of parameters considered, the ordinary bifurcation approach using the free edge assump
tion predicts critical loads in quite good agreement with the present theory and experiment.
A possible explanation may be that when using bifurcation analyses, prebuckling deforma
tions are usually ignored, hence realistic boundary conditions may imply a buckling process
which is not too realistic and the predicted critical load may be quite different from the
actual maximum load. If on the other hand, unrealistic boundary conditions are assumed
such that a more realistic buckling process is implied, a fairly accurate critical load may
be predicted Lee [9J has devised a more rigorous bifurcation approach, for the case of
the axisymmetric deformation with edge constraints, in which the configuration just prior
to buckling is approximated. A critical load of unloading is then calculated and is very
close in value to the corresponding maximum loads by the present procedure. If deforma
tion theory is considered, it is seen that buckling loads somewhat lower than experimental
results may be predicted if prebuckling deformation and initial imperfections are con
sidered. Finally, the numerical maximum load for cylinder IV and the corresponding
experimental result for the diamond shape mode of deformation are presented on the
same figure. Although for this case the comparison with experiment is not as favorable
as in the axisymmetric case, it should be noted that the present procedure predicts a

BY BATTERMAN (7) (FREE EDGE)
BIFURCATION LOAD BY INC. THEORY

16

'8-

§
14

BY GERARD (2)
BIFURCATION LOAD
BY DEF. THEORY

BY BATTERMAN (5)
BIFURCATION LOAD BY INC. THEORY
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LOADS BY INC. THEORY

X EXPERIMENTAL MAX.
LOADS BY LEE (3)

6050402010 30

R,1, RATIO

FIG. 4. Comparison of critical loads by different theories with experimental data.
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maximum load which is substantially lower than the corresponding load by the idealized
bifurcation approach using the incremental theory of plasticity.

CONCLUSIONS

The results of this investigation indicate that the variational principle developed in
this paper for quasi-static problems of finite plasticity may be used to determine the
deformation process of an inelastic body. By using the variational principle and the
incremental Rayleigh-Ritz technique, the inelastic buckling process of axially compressed
cylindrical shells with edge constraints can be reasonably predicted. It is found that the
stress-strain relationship by the modified· J 2 incremental theory, when employed con
currently with more realistic treatments of boundary conditions and pre-buckling finite
deformation, yields a fairly accurate prediction of the buckling strength of a cylindrical
shell.
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A6cTpaKT-B pa60Te HCCJIe.ll.YIOTcli J«!><PeKTbl .ll.e«!>opMal.lHH .ll.0 Bbmy'lHBaHHlI, Bb13BaHHble KpaeBblMIf
OrpaHH'IeHHlIMH H HeJIHHeAHali 3aBHCHMOCTb .ll.e«!>0pMal.lHA Ha HeJIHHeAHblH npol.lecc BbmY'IHBaHHlI oceBO
ClKaTblX l.lHJIHH.ll.PH'IecKHX o60JIO'leK. nOJIb3YllCb nOCTyJIaTOM ):{paKepa nOJIOlKHTeJIbHOH pa60Tbi B UJIaCT
H'IecKOA .ll.e«!>opMal.lHH, BbIBO.ll.HTCli MO.ll.H«!>Hl.lHpOBaHHali TeopHli nJiaCTH'IHOCTH MpWpl.lMeTMl.l .ll.JIli 3aBHC
HMOCTH HanplilKeHHe-.ll.e«!>opMal.lHlI, npe.ll.CTaBJIeHHa B TepMHHOJIOrHH KHpxro«!>«!>a H CKOpOCTH .ll.e«!>opMal.lHH
rpHHa. ):{aeTcli BapHal.lHOHHblH npHHl.lHn, B 3anHCH JIarpaHlKa H .ll.JIli KBa3H-CTaTH'IeCKHX 3a.ll.a'l KOHe'lHOH
UJIaCTH'IHOCTH. YKa3blBaeTcli npHHl.lHn JKCTpeMyMa .ll.JIli MaTepHaJIa, OOJIa.ll.alO1l.lero .ll.OCTaTO'lHO 60JIbWoA
CKOpOCTblO ynpo'lHeHHlI. ):{06aSO'lHO, onpe.ll.eJIlieTCli KpHTepHH .ll.JIli YCTOH'IHBOCTH TeJIa no.ll. BJIHlIHHeM
co6cTBeHHoA Harpy3KH. I1cnoJIb3yeTcli BapHal.lHOHHbIH npHHl.lHIT BMecTe C cnoc06oM npHpameHHlI PeJIell
PHTl.la, .ll.JIli onpe.ll.eJIeHHlI npOl.lecca .ll.e«!>opMal.lHH H.ll.eaJIH3HpOBaHHoH l.lHnHH.ll.PH'IeCKOH 060JIO'lKH, cnOlKe
HHOA H3 '1eTblpex TOHKHX cnoeB, HecYWHX Harpy3Ky. 3TH cnoll H3rOTOBneHHbie He MaTepHana 06 061l.leM
ynpo'lHeHHIO. TeOpeTH'IecKHe npe.ll.CKa3aHHlI, nony'leHHble '1HCneHHO Ha BUM cpaBHHBalOTClI Y.ll.06HO C
.ll.OCTynHbIMH JKCnepHMeHTanbHblMH peJynbTaTaMH.


